Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1193282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426813

RESUMO

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 µM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 µM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 µM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.

2.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364176

RESUMO

The synthesis of cyclotetrapeptides analogues of the natural products tentoxin and versicotide D was achieved in good yield by solid phase peptide synthesis (SPPS) of their linear precursors and solution phase cyclization. All the cyclopeptides and several open precursors were evaluated as herbicides. Five cyclopeptides and five lineal peptides showed a significant inhibition (>70%) of Ryegrass seed's radicle growth at 67 µg/mL. The evaluation at lower concentrations (4−11 µM) indicates two cyclopeptides analogs of tentoxin, which present one (N-Methyl-d-Phe), and two N-MeAA (N-Methyl-Ala and N-Methyl-Phe), respectively, as the most active of them, showing remarkable phytotoxic activity. In two cases, the open precursors are as active as their corresponding cyclopeptide. However, many linear peptides are inactive and their cyclization derivatives showed herbicidal activity. In addition, two cyclopeptide analogues of versicotide D showed more improved activity than the natural product. The results indicate that the peptide sequence, the amino acid stereochemistry and the presence of N-methyl group have important influence on the phytotoxic activity. Moreover, several compounds could be considered as lead candidates in the development of bioherbicides.


Assuntos
Produtos Biológicos , Herbicidas , Produtos Biológicos/farmacologia , Herbicidas/farmacologia , Ciclização , Peptídeos Cíclicos/química , Técnicas de Síntese em Fase Sólida
3.
Med Chem Res ; 31(3): 426-435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35106047

RESUMO

During the last years, the progression to control malaria disease seems to be slowed and WHO (World Health Organization) reported a modeling analysis with the prediction of the increase in malaria morbidity and mortality in sub-Saharan Africa during the COVID-19 pandemic. A rapid way to the discovery of new drugs could be carried out by performing investigations to identify drugs based on repurposing of "old" drugs. The 5-nitrothiazole drug, Nitazoxanide was shown to be active against intestinal protozoa, human helminths, anaerobic bacteria, viruses, etc. In this work, Nitazoxanide and analogs were prepared using two methodologies and evaluated against P. falciparum 3D7. A bithiazole analog, showed attractive inhibitory activity with an EC50 value of 5.9 µM, low propensity to show toxic effect against HepG2 cells at 25 µM, and no cross-resistance with standard antimalarials.

4.
Eur J Med Chem ; 189: 112043, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978782

RESUMO

Polyamides-based compounds related to the Streptomycetal distamycin and netropsin are potent cytostatic molecules that bind to AT-rich regions of the minor groove of the DNA, hence interfering with DNA replication and transcription. Recently, derivatives belonging to this scaffold have been reported to halt the proliferation of deadly African trypanosomes by different and unrelated mechanisms. Here we describe the synthesis and preliminary characterization of the anti-trypanosomal mode of action of new potent and selective distamycin analogues. Two tri-heterocyclic derivatives containing a central N-methyl pyrrole ring (16 and 17) displayed high activity (EC50 < 20 nM) and selectivity (selectivity index >5000 with respect to mammalian macrophages) against the infective form of T. brucei. Both compounds caused cell cycle arrest by blocking the replication of the mitochondrial DNA but without affecting its integrity. This mode of action clearly differs from that reported for classical minor groove binder (MGB) drugs, which induce the degradation of the mitochondrial DNA. In line with this, in vitro assays suggest that 16 and 17 have a comparatively lower affinity for different template DNAs than the MGB drug diminazene. Therapeutic efficacy studies and stability assays suggest that the pharmacological properties of the hits should be optimized. The compounds can be rated as excellent scaffolds for the design of highly potent and selective anti-T. brucei agents.


Assuntos
Ciclo Celular/efeitos dos fármacos , Distamicinas/química , Macrófagos/efeitos dos fármacos , Tiazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Animais , Feminino , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Tiazóis/química , Tripanossomicidas/química , Trypanosoma/parasitologia , Tripanossomíase Africana/parasitologia
5.
ACS Med Chem Lett ; 10(1): 137-141, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655961

RESUMO

Malaria is a major tropical disease where important needs are to mitigate symptoms and to prevent the establishment of infection. Cyclopeptides containing N-methyl amino acids with in vitro activity against erythrocytic forms as well as liver stage are presented. The synthesis, parasitological characterization, physicochemical properties, in vivo evaluation, and mice pharmacokinetics are described.

6.
Eur J Med Chem ; 126: 776-788, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27951486

RESUMO

Distamycin, a natural polyamide containing three heterocycle rings with a polar end, has inspired several groups to prepare synthetic analogues, which proved to have anti-trypanosomal and anti-tumoral activity. We describe the synthesis of bi and tri thiazoles amides that harbor different substitutions at their ends and the evaluation of their anti-Trypanosoma brucei activity. The most active compound 10b showed better biological activity (EC50 310 nM and selectivity index 16) than the control drug nifurtimox (EC50 15 µM and selectivity index 10). Studies on the mode of action show that the parasiticidal activity of 10b originates from disruption of lysosomal homeostasis, which is followed by release of redox active iron, an increase in oxidizing species and collapse of cell membrane integrity. In this respect, our study suggests that non-charged lipophylic distamycins destabilize cell membranes.


Assuntos
Distamicinas/farmacologia , Tripanossomicidas/química , Trypanosoma/efeitos dos fármacos , África , Antineoplásicos/química , Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Tiazóis/síntese química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
7.
Future Med Chem ; 7(3): 355-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25650721

RESUMO

Macrocycles possess desirable properties that make them promising candidates for the discovery of novel drugs. They present structural features to favor bioactive conformations, selectivity to the receptors, cell permeability and metabolic stability. More effective and nontoxic drugs to cure human African trypanosomiasis, Leishmaniasis and Chagas disease are needed, especially because resistance has been detected. Therefore, major efforts should be made for investigation in new bioactive compounds exhibiting different mechanisms of action. Macrocycles might fulfill the expectations for the development of new drugs to treat those diseases. In the current review, we focus on macrocycles exhibiting biological activities as antitrypanosomal and/or antileishmanial. The isolation, synthetic and biological studies of this class of compounds published from 2005 to 2014 are summarized.


Assuntos
Antiprotozoários/uso terapêutico , Compostos Macrocíclicos/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Antiprotozoários/química , Descoberta de Drogas , Humanos , Compostos Macrocíclicos/química , Conformação Molecular , Tripanossomicidas/química
8.
Bioorg Med Chem Lett ; 22(15): 4994-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22765903

RESUMO

The synthesis of a Microcystis aeruginosa predicted metabolite analog of aerucyclamide B was performed. This hexacyclopeptide was obtained from three heterocyclic building blocks by a convergent macrocycle-assembly methodology. The compound exhibited good in vitro antiplasmodial activity (IC(50): 0.18 µM, K1, cholorquine resistant strain).


Assuntos
Antimaláricos/síntese química , Microcystis/metabolismo , Peptídeos Cíclicos/metabolismo , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Oxazóis/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...